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Preface

By Robert O. Work

We are in the midst of an ever accelerating and 
expanding global revolution in artificial intelligence 
(AI) and machine learning, with enormous implica-
tions for future economic and military competitiveness. 
Consequently, there is perhaps no debate more 
important than how the United States and other demo-
cratic powers exploit advances in AI and the associated 
technologies, sub-disciplines, and methods used to 
create intelligent machine behavior – within the moral, 
ethical, political, and legal boundaries acceptable to their 
leaders and citizens.

The idea of establishing boundaries for AI is vitally 
important in democratic societies. The general public 
reaction to the prospect of a future where more and more 
tasks and decisions are delegated to machines is decid-
edly mixed, having been indelibly shaped for decades by 
science fiction writing, television, and movies. As early as 
1927, Metropolis, one of the first full-length sci-fi movies 
ever made, told the story of a scientist who builds a robot 
to replace his lost love. But the robot gets other ideas and 
ultimately holds sway over an entire city. Metropolis is 
just one example of two big concerns about intelligent 
machines often explored in science fiction: They will 
either enslave us (e.g., Metropolis, the Matrix trilogy), 
or they will kill us (e.g., The Terminator, Battlestar 
Galactica). And now, given how AI and machine learning 
are beginning to impact the workplace, there is a third 
compelling concern: Intelligent machines will take 
our jobs (e.g., Martin Ford’s book, Rise of the Robots: 
Technology and the Threat of a Jobless Future).

These dystopian outcomes need to be balanced by 
visions of a future in which intelligent machines have 
a more positive impact on our society. AI and machine 
learning will likely lead to a new industrial revolution, 
improving economic competitiveness and creating 

new sources of wealth. They will lead to advances in 
medical science and automobile safety. They will enable 
new forms of virtual training and entertainment. Their 
positive impact on our society and well-being is likely to 
be profound.

And they will inevitably impact international security 
and the application of military power – the subject of 
this report. The following is intended as a primer on AI 
and machine learning in the national security space. It 
explains the AI language and ideas policymakers need to 
know; explores the security-related applications of artifi-
cial intelligence; ponders strategic competition in an era 
of AI and machine learning; and discusses the indirect 
effects of the AI revolution for global security.

We hope the report will provide a solid foundation 
for a healthy debate on how AI can be used responsibly 
to improve our national security. Indeed, it provides the 
intellectual vector for the CNAS Task Force on Artificial 
Intelligence and National Security, which I co-chair with 
Dr. Andrew Moore of Carnegie Mellon University. Driven 
by the desire to debate thoroughly the acceptable bound-
aries of AI and machine learning in security applications, 
the task force – consisting of a variety of experts from 
government, academia, and public/private businesses 
and organizations – will discuss such topics as:

¡¡ Ensuring U.S. leadership in AI research  
and innovation

¡¡ Empowering the federal government to take  
advantage of AI opportunities

¡¡ Ensuring safe and responsible uses of AI in  
national security applications

¡¡ Preparing to counter the malicious uses of AI

It will also try to find the right balance between the 
more pessimistic and optimistic narratives associated 
with AI and machine learning, and ensure the ethical and 
moral pursuit of these technologies.

I hope you enjoy the read!
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The Artificial Intelligence Revolution 

The artificial intelligence revolution is underway. 
Tremendous gains in AI and machine learning are being 
applied across a range of industries: medicine, finance, 
transportation, and others. These developments likely 
will have a profound impact on the global economy and 
the international security environment. Business leaders 
and politicians around the world, from Elon Musk to 
Vladimir Putin, are increasingly thinking about whether 
AI will trigger a new industrial revolution. Like the 
steam engine, electricity, and the internal combustion 
engine, AI is an enabling technology with a wide range 
of applications. The technologies in the first and second 
industrial revolutions allowed the creation of spe-
cial-purpose machines that could replace human physical 
labor for specific tasks. Today, AI is enabling the creation 
of special-purpose machines to replace human cognitive 
labor for specific tasks. As co-founder of Wired Kevin 
Kelly observes, “[AI] will enliven inert objects, much as 

electricity did more than a century ago. Everything that 
we formerly electrified we will now cognitize.”1

Preparing for the consequences of the AI revolution 
is a critical task for the national security community. 
Nearly every aspect of national security could be shaped 
by artificial intelligence. AI has applications for defense, 
intelligence, homeland security, diplomacy, surveil-
lance, cybersecurity, information, and economic tools 
of statecraft. The United States must not only anticipate 
these developments, but act decisively to prepare for 
uses by competitors and take advantage of the opportu-
nities AI presents.

It is not enough, however, to prepare only for AI’s 
direct applications to national security missions. The 
first and second industrial revolutions kicked off a broad 
pattern of industrialization that led to sweeping social, 
economic, and political change. Nations rose and fell. 
Urbanization and industrialization changed domestic 
politics and led to the rise of the middle class. Even the 
key metrics for global power changed, with coal- and 
steel-producing nations gaining in strength and oil 
becoming a global strategic resource. The geography of 
power also changed as nations fought to secure access to 

critical resources, culminating in wars over territories 
that would have been insignificant in an era of agricul-
tural power. 

The AI revolution could also change the balance of 
power and even the fundamental building blocks of the 
global economy. Just as coal fuels steam engines and oil 
fuels internal combustion engines, data fuels the engines 
of machine learning. Nations with access to the best data, 
computing resources, human capital, and processes of 
innovation are poised to leap ahead in the era of artificial 
intelligence. As the world’s most advanced economy and 
an engine of technological innovation, the United States 
has many advantages over other nations, but it is not alone 
in this technology race. China is a major player in AI and 
has embarked on a national plan to be the world’s leader 
by 2030. Russia has signaled its interest in AI, with Putin 
stating in 2017 that “the one who becomes the leader in 
[artificial intelligence] will be the ruler of the world.”2 

The integration of AI technologies across human 
society could also spark a process of cognitization 
analogous to the changes wrought by industrialization. 
Automation will transform and replace jobs, alter the 
balance between labor and capital, and change national 
politics and foreign policy. A study conducted by the 
McKinsey Global Institute recently estimated that 
roughly 45 percent of job tasks currently being done 
in the U.S. economy could be automated using existing 
technology. How societies manage these changes will 
affect their internal cohesion and global competitiveness.

This report is part of the Center for a New American 
Security’s multi-year Artificial Intelligence and Global 
Security Initiative. It is intended as an introduction 
to the impact of advances in artificial intelligence for 
national security and an initial exploration into how AI 
may change the international security environment. It 
builds on work done by experts from CNAS and other 
institutions. The AI revolution will take decades to 
unfold and will evolve in surprising ways. Computers 
and digital networks have evolved considerably since the 
early days of mainframes and ARPANET. The new digital 
information landscape of social media, viral videos, 
and fake news would have been hard to foresee half a 
century ago. It is impossible to foresee all of the possible 

Preparing for the 
consequences of the  
AI revolution is a critical 
task for the national 
security community. 

The integration of AI 
technologies across human 
society could also spark a 
process of cognitization 
analogous to the changes 
wrought by industrialization. 
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changes that artificial intelligence and machine learning 
may bring to global security, but with preparation policy-
makers can better chart a course through the uncertain 
waters ahead.

What is Artificial Intelligence?

Artificial intelligence and machine learning, a method 
of AI, make it possible to build special-purpose machines 
to perform useful cognitive tasks, in some cases better 
than humans. Early AI systems were rule-based “expert 
systems” where a computer program simply followed 
a set of specific instructions about how to behave in a 
particular situation. Recent AI advances enable much 
more sophisticated systems. Machine learning allows 
algorithms to learn from data and develop solutions to 
problems. These increasingly intelligent machines can 
be used for a wide range of purposes, including analyzing 
data to find patterns and anomalies, predicting trends, 
automating tasks, and providing the “brains” for autono-
mous robotic systems. 

Current AI systems are “narrow,” however, in that 
their expertise is confined to a single domain, as opposed 
to hypothetical future “general” AI systems that could 
apply expertise more broadly. Machines – at least for now 
– lack the general-purpose reasoning that humans use 
to flexibly perform a range of tasks: making coffee one 
minute, then taking a phone call from work, then putting 
on a toddler’s shoes and putting her in the car for school. 

This narrowness is a significant limitation of AI systems. 
Current AI systems can fail if they are deployed outside 
of the context for which they were designed, making 
their performance “brittle” in real-world applications. 
AI systems that outstrip human abilities in one task may 
suddenly perform poorly if the context for their use 
changes. Despite these limitations, narrow AI systems 
have tremendous value and are already being applied 
to a range of real-world arenas, from stock trading to 
shopping to predicting the weather. 

Artificial intelligence is the field of study devoted to 
making machines intelligent.3 Intelligence measures a 
system’s ability to determine the best course of action to 
achieve its goals in a wide range of environments.4 The 
field of AI has a number of sub-disciplines and methods 
used to create intelligent behavior, and one of the most 
prominent is machine learning. 

 

Current AI systems are 
“narrow,” however, in that 
their expertise is confined to a 
single domain, as opposed to 
hypothetical future “general” 
AI systems that could apply 
expertise more broadly. 

AI-based image recognition 
systems surpassed human 
performance in 2016 in 
benchmark tests, such  
as the ImageNet image 
database. (Electronic  
Frontier Foundation, AI 
Progress Measurement)

ImageNet Image Recognition
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Machine Learning 
Machine learning has proven to be a particularly 

powerful approach for generating intelligent behavior. 
Given a goal, learning machines adjust their behavior to 
optimize their performance to achieve that goal.5

Data is the fuel that powers the engine of machine 
learning. Supervised learning makes use of labeled 
training data. For instance, an algorithm might take as 
input millions of labeled images, such as “dog,” “person,” 
“apple.” The algorithm then learns subtle patterns 
within the images to distinguish between categories – for 
example, between an apple and a tomato. This approach, 
which relies on large amounts of data and machine 
learning, can be helpful in situations where a rule-based 
approach might come up short. Trying to hand-code 
a set of rules for a machine (or a person) to visually 
distinguish between an apple and a tomato would be 
challenging. Both objects are round, red, and shiny with 
a green stem on top. Yet they look different in subtle and 
important ways that are obvious even to a young child. 
Given enough labeled images of both, machines can also 
learn these differences and then distinguish between an 
apple and a tomato when they are not labeled. In fact, in 
2016 machines surpassed humans at benchmark tests for 
image classification.6 

Unsupervised learning uses unlabeled training data 
– like the same images of apples, tomatoes, or dogs, but 
with no name attached to them. Even without labels, 

machines can sort data into clusters or categories based 
on patterns within the data. Watching a new sports game, 
humans can discern patterns of behavior and rules, even 
if the terms used in the game may be foreign. Similarly, 
machines can find anomalies or predict future behavior 
by analyzing data. For example, an AI system can analyze 
financial transactions and sort them into clusters based 
on data associated with the transaction (time, amount, 
sender, etc.) This can be used to identify anomalous 
transactions that are outside the norm and may be fraud-
ulent activity. This has wide-ranging applications, from 
detecting brain tumors to predicting the weather. 

Reinforcement learning uses feedback from the envi-
ronment to train machines.7 Just as humans learn from 
touching a hot stove, AI systems can learn from envi-
ronmental feedback whether their actions are helpful 
or harmful in accomplishing their goals. For example, 
AI systems have learned to play Atari games based on 
feedback from the game score. The AI system learns 
that some moves result in a higher score; over time, this 
can improve the system’s behavior to optimize pursuit 
of a goal, such as winning the game. In some cases, even 
without human training data, AI systems using reinforce-
ment learning have learned to play games to superhuman 
levels of performance. 

Deep learning is a type of machine learning that uses 
neural networks. Neural networks are loosely inspired by 
biological neurons and use a series of artificial neurons 
connected in a layered network. Input data flows into 
one end of the network, then signals cascade across 
the network through the artificial neurons to an output 
layer. For example, the input data for a neural network 

Data is the fuel that powers the 
engine of machine learning. 

A deep neural 
network has hidden 
layers between the 
input and output 
layers. Some deep 
neural networks can 
have more than 150 
hidden layers.  
(Paul Scharre)
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doing image recognition would be each pixel in an image. 
The output of the neural network would be the label for 
that image. “Deep” neural networks are those that have 
multiple “hidden layers” between the input and output 
layer. Neural networks learn by adjusting the weight of 
the connections between each neuron to optimize the 
paths through the network to achieve a certain output. 
Some deep neural networks used for image recognition 
can have hundreds of thousands of artificial neurons.8 
Neural networks can learn via supervised learning, unsu-
pervised learning, or reinforcement learning, depending 
on whether the data used to train the neural network 
is labeled, unlabeled, or comes from environmental 
feedback. Deep neural networks are widely used for 
many AI applications today, from image recognition to 
predicting medical outcomes. 

Generative adversarial networks pit two competing 
neural networks against one another in a game. One 
network attempts to create synthetic (computer-gener-
ated) data that is indistinguishable from training data. 
For example, this could consist of creating a comput-
er-generated image of a dog, based on training data 
pictures of real dogs. Using the output of the first neural 
network, an “adversarial” network attempts to discern 
the synthetic data from the training data – distinguishing 
between the real dogs and the computer-generated ones.9  
With each iteration, both networks learn and improve. 
This approach has been used to generate “deep fakes” 
– high-quality fake pictures, audio, and video that are 
indistinguishable to humans from the real thing.10 

Machine learning is one approach for building intel-
ligent machines, but it is not used in all forms of AI. For 
example, the poker-playing AI system Libratus that 
defeated top human poker players in 2017 uses compu-
tational game theory and does not use machine learning. 
Other forms of AI include: neural networks, evolutionary 
or genetic algorithms, computational game theory, 
Bayesian statistics, inductive reasoning, fuzzy logic, ana-
logical reasoning, and hand-coded expert knowledge, to 
name just a few.

Advances in Machine Learning Methods
Successful machine learning applications generally 

require large amounts of data to train algorithms. 
For instance, the ImageNet database used to train 

image classifiers has over 14 million labeled images, and 
the organizers have a goal of 1,000 images per image 
category (for example, a dog would be an image category, 
as would a soccer ball).11 The first version of AlphaGo, a 
program developed by AI research company DeepMind 
in 2016, initially learned to play the Chinese strategy 

game Go based on training data from 30 million human 
moves. However, data can be a major limitation for 
applications where large datasets may not exist. In such 
settings, AI researchers are increasingly turning to “syn-
thetic data” created via computer simulations. A newer 
version, AlphaGo Zero, did not use any initial training 
data from human games; it learned to play Go by playing 
against itself. Large amounts of synthetic data were still 
needed, however, with AlphaGo Zero playing 4.9 million 
games against itself.12  

AI researchers are also improving their ability to train 
machines using sparse datasets. Google’s multilingual, 
neural-network-based language translation tool has been 
able to do “zero-shot” translation between two languages 
for which it has no translation data by relying on data 
between each language and a third language. By feeding 
in data on Portuguese to English and English to Spanish 
translations, the system learned to translate Portuguese 
to Spanish without any Portuguese to Spanish training 
data.13  This could allow translations between rare lan-
guages for which there may be little data from one to the 
other, but some data translating each to a more common 
language such as English.

A major hurdle for AI systems today is their limita-
tions in transferring learning from one task to another 
related task. Humans can learn one skill, then leverage 
that knowledge to more quickly acquire knowledge in a 
related area, building on what they already know. When 
AI systems attempt to learn a new task, they frequently 
suffer from “catastrophic forgetting,” where they lose 
their old knowledge. In December 2017, DeepMind 
released AlphaZero, a single algorithm that could learn 
to play Go, chess, or the Japanese strategy game Shogi.14  

Building a single algorithm that could learn to play three 
different strategy games without any training data was 
an impressive feat. Different versions of AlphaZero 
needed to be trained for each game, however. AlphaZero 
could not transfer learning from one game to another, as 

AI researchers are 
increasingly turning to 
“synthetic data” created 
via computer simulations. 

A major hurdle for AI systems 
today is their limitations in 
transferring learning from one 
task to another related task.
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a human might. This limitation restricts AI systems to 
narrowly performing only one task, even if they acquire 
superhuman performance at that task.  

AI researchers are making progress on multi-task 
learning, however. In February 2018, using deep rein-
forcement learning, DeepMind trained a single AI system 
to perform 30 different tasks within a simulated envi-
ronment. Not only did the agent learn new tasks without 
forgetting others, the agent’s performance demonstrated 
positive transfer of learning between some tasks.15  

AI Progress through Games
Games have often played a critical role in the advance-

ment of AI, both as a challenge for researchers and 
as a benchmark for progress. The first game to fall to 
machines was tic-tac-toe (noughts and crosses), beaten 
in 1952. Chess was an early target, with programmers 
building the first chess-playing computers in the 1950s, 
but these early programs were far short of human 
abilities.16 Checkers, which is simpler than chess, fell 
to machines in 1994. A few years later, in 1997, IBM’s 
DeepBlue beat Gary Kasparov at chess. 

Chess, checkers, and Go provide useful yardsticks for 
AI progress because their complexity can be quantified. 
For example, the total space of possible positions in 
checkers is 5 x 10^20 (500 billion billion possible posi-
tions).17 In 2007 AI researchers “solved” checkers by 
calculating the optimal move for every relevant position 
(roughly 10^14 positions).  By “solving” checkers, AI 

researchers were able to do far more than simply beat 
human performance; they were able to determine the 
best move in any given situation. 

Chess is far more complex, with roughly 10^40 to 10^50 
possible positions. This means that heuristics (common 
rules for behavior) are needed to win at chess, which 
cannot be computationally solved. Go is another matter 
entirely, with approximately 10^170 possible positions. 
This is roughly 10^100 (a googol) more complex than 
chess and more than the number of atoms in the known 
universe.18  For Go, the number of calculations to math-
ematically solve the game is so large that the same kinds 
of brute force methods used in checkers and early chess 
programs are inadequate.

Over time, AI researchers have taken to tackling more 
open-ended games in a variety of areas. The quiz show 
Jeopardy!, for example, has a much more unbounded 
space of potential questions than strategy board games 
and requires reasoning by analogy, understanding puns 
and riddles, and other linguistic challenges. IBM’s 
Watson defeated human contestants Ken Jennings 
and Brad Rutter at Jeopardy! in 2011, in part due to its 
superior reflexes at timing when to buzz in.

Chess, checkers, and Go 
provide useful yardsticks for 
AI progress because their 
complexity can be quantified. 

Jeopardy! contestants Ken Jennings and Brad Rutter lost to IBM’s supercomputer ‘Watson’ in Jeopardy! in 2011. Defeating humans at quiz games involving puns, 
analogies, and other linguistic challenges was a major step forward for AI. (Ben Hider/Getty Images)
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Poker has long been seen as particularly challenging 
for AI systems since it is an incomplete information 
game. Unlike checkers, chess, or Go, where all of the 
relevant information is on the board, in poker some 
information (the other players’ cards) is hidden. This 
is a much more complex challenge, but the AI Libratus 
defeated top human poker players in 2017. Interestingly, 
Libratus was able to do so without using many of the 
techniques that human players use, such as spotting tells 
or capitalizing on other players’ weaknesses.19   

AI researchers have also tackled computer games of 
increasing complexity. In 2014, DeepMind developed a 
single algorithm that learned to play a range of different 
Atari games with only the pixels from the screen and 
game score as input. Using reinforcement learning, the 
algorithm was able to learn which moves improved its 
score. Their algorithm was able to play near or above 
human level at more than half of the 49 games it played. 
(A different algorithm had to be trained for each game, 
due to catastrophic forgetting; the moves in Pac-Man are 
different than the moves in Asteroids, so learning how to 
play one does not help an AI learn to play the other.) 

When AI researchers at DeepMind developed a super-
human Go program, they did so using a combination of 
methods. First, they used data from 30 million human 
moves to train the algorithm how humans play, a form 
of supervised learning. Then, they had the machine play 
against itself to evolve its game even further through 
reinforcement learning.20 This initial program, AlphaGo, 

beat top human player Lee Sedol in 2016. In November 
2017, DeepMind released a new version, AlphaGo Zero, 
which taught itself to play entirely through self-play 
and without any human examples. Within three days 
of self-play, during which it played 4.9 million games, 
AlphaGo Zero achieved superhuman performance and 
beat the previous version of AlphaGo 100 games to zero.21 
A few weeks later in December 2017, DeepMind released 
AlphaZero, a single algorithm that learned to play Go, 

chess, and Shogi through reinforcement learning (with 
a different version for each game). In the case of chess, 
AlphaZero was able to reach superhuman performance – 
eclipsing millennia of human knowledge at chess – after 
a mere four hours of self-play.22  

More recently, AI researchers have turned to 
computer real-time strategy games as a testbed for AI. 
In these games, such as Starcraft, players simultane-
ously compete in an open environment, controlling and 
fighting multiple units at one time, making them more 
computationally complex than turn-based games such 
as chess. The AI research company OpenAI developed a 
program that beat humans at the computer game Dota 2 

Google DeepMind’s AI program AlphaGo plays against Lee Sedol in 2016. AlphaGo was able to reach superhuman levels of play by playing against itself.  
(Kim Min-Hee-Pool/Getty Images)

Recently, AI researchers 
have turned to computer 
realtime strategy games 
as a testbed for AI.  
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in 1v1 play in 2017.23 OpenAI used a similar technique as 
the first AlphaGo, with initial supervised learning based 
on human play and then self-play using reinforcement 
learning to reach superhuman abilities. 

Looking ahead, AI research companies are focusing 
on ever more complex strategy games. Dota 2 is normally 
played in 5v5 team matches, and OpenAI researchers have 
announced they are turning their attention to 5v5 play. 
DeepMind has said they are designing an algorithm to beat 
humans at Starcraft, another real-time strategy game.24 

Applicability of Current AI Methods
Progress in games demonstrates the art of the possible 

with current AI methods. Deep learning, and deep 
reinforcement learning in particular, has proven to be a 
powerful method for tackling many different problems.25 

Competitive self-play is valuable in improving AI 
performance, from creating fake images to achieving 
superhuman performance at games. As the AI research 
company OpenAI explained in a blog post regarding their 
system that beat humans at Dota 2:

[S]elf-play can catapult the performance of 
machine learning systems from far below human 
level to superhuman, given sufficient compute 
[computing power] … Supervised deep learning 
systems can only be as good as their training 
datasets, but in self-play systems, the available data 
improves automatically as the agent gets better.26 

For tasks that have a clear metric for better perfor-
mance, a sufficiently bounded space of possible options, 
and training data or the ability to generate synthetic 
data, machine learning can sometimes yield human- or 
superhuman-level performance. These techniques are 
applicable to a wide variety of real-world tasks.

What is AI Good For?

Rule-based AI systems have been around for decades, 
but recent advances in big data, computational power, 
and improved algorithms have led to significant improve-
ments in AI capabilities. As a result, more advanced AI 
systems are moving out of the lab and into the real world. 
For some applications, such as image recognition, AI 
systems have already beaten humans in benchmark tests. 
In other cases, such as language translation, current AI 
systems are not as effective as the best human translators 
but are good enough to be useful in some settings. AI 
systems may not need to achieve superhuman perfor-
mance to be valuable, however. In some cases, their value 
may come from being cheaper, faster, or easier to deploy 
at scale relative to human expertise. Some examples of AI 
uses include:

¡¡ Data classification – AI systems can be used to help 
classify data, from images to song genres to medical 
imagery and diagnosis.27 In many cases, AI systems can 
classify data more reliably and accurately than humans.  

Real-time strategy 
games, such as Dota 2, 
are the latest frontier for 
AI systems in achieving 
superhuman performance 
in games because of their 
complexity and open-
ended game play options. 
(OpenAI)
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¡¡ Anomaly detection – AI systems can help detect 
anomalous behavior, such as fraudulent financial 
transactions or new malware.28  AI systems can find 
anomalies whose signatures are not yet known by 
analyzing routine patterns of behavior (financial, 
cyber, or other) and then identifying new behavior 
that is outside the norm. These systems can be used 
to monitor large data streams at scale and in real 
time, in ways that would not be feasible for humans.

¡¡ Prediction – By finding patterns across large sets 
of data, AI systems can make statistical predictions 
about future behavior. Systems of this type are 
already in routine commercial use, such as search 
engine auto-fills and Netflix and Amazon recommen-
dations. Machine learning has also demonstrated 
value in improving weather forecasting.29  Some 
applications raise thorny ethical issues, such as using 
AI for predictive policing or estimating longevity of 
medical patients in end-of-life care.30  

¡¡ Optimization – AI systems can be used to optimize 
performance for complex systems and tasks. For 
example, DeepMind used machine learning to 
optimize Google data centers to improve energy 
efficiency, resulting in a 40 percent savings in 
the amount of energy needed for cooling and a 15 
percent overall improvement in energy efficiency.31  

 
Autonomy

Artificial intelligence also allows the creation of 
machines with greater autonomy, or freedom, to perform 
tasks on their own. As machines become more capable, 
humans may be comfortable delegating them greater 
autonomy in a wider variety of settings. Autonomy has 
many advantages, including: 

¡¡ Embedded expertise – Automation allows less-
er-skilled individuals to perform tasks at or near the 
same level as higher-skilled workers by embedding 
expertise within the machine. For example, indi-
viduals can use tax preparation software to do their 
taxes, with the computer performing many of the 
tasks normally performed by an accountant. This 
can lower the barrier to entry for humans to perform 
certain tasks. 

¡¡ Larger scale operations – Because software can be 
replicated at close to zero cost, automation allows 
the deployment of expertise at large scales. Tasks 
that normally could be done by humans, but only at 
small scales, can become feasible at larger scales with 
automation. Examples including automated spear 
phishing for cyber attacks, targeting advertising and 

sales to certain groups, and automated bug finding 
for discovering cyber vulnerabilities in software. 

¡¡ Faster-than-human reaction times – Automation 
can perform tasks at superhuman speeds, reacting to 
events far more quickly than would be possible for 
humans. This is already the case today for high-fre-
quency stock trading, which occurs in milliseconds, 
and automatic braking in automobiles. 

¡¡ Superhuman precision and reliability – Automation 
can be used to perform many tasks with precision 
and reliability that surpasses human performance. 
The X-47B experimental drone demonstrated a 
degree of precision in its landings that would be 
impossible for humans to match. Robot-assisted 
surgery is used to perform miniaturized, high-preci-
sion surgery that is not possible with human hands. 

¡¡ Superhuman patience and vigilance – Automated 
systems can monitor data without tiring or losing 
attention, keeping a vigilant eye on nuclear power 
plants or observing computer network activity for 
malware signatures.  

¡¡ Operations without connections to humans – 
Autonomy enables robotic systems to perform 
missions independently without reliable communi-
cations to humans. In some cases this could be for 
long periods of time, such as autonomous under-
water gliders that operate at sea for months at a time 
performing oceanographic surveys.32  

Limitations of Current AI Systems
In spite of these advantages, artificial intelligence still 

has significant limitations. Current AI systems gener-
ally lack the ability to understand the context for their 
behavior, flexibly adapt to novel circumstances outside 
the parameters of their design, or employ what humans 
might think of as “common sense.” A contemporary 
image recognition system, for example, could accurately 
identify objects in a scene, but would generally struggle 
to tell a coherent story about what was happening. 
Similarly, AI systems can accurately identify human faces 
and emotions and precisely track body movements, but 
would not be able to tell a plausible story explaining the 
motivations for a person’s behavior. The result is an “idi-
ot-savant” form of intelligence; AI systems may perform 
far better than humans in some areas while simultane-
ously failing to exhibit common sense.
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AI Safety Concerns and  
Vulnerabilities

In addition to the general limitation of narrowness, 
current AI systems have a number of vulnerabilities and 
safety concerns that decision-makers should take into 
account. These are especially important for national 
security applications, where the consequences of 
mistakes or adversary hacking could be severe. Below is  
a brief overview of some of these problems.

Brittleness
The narrow nature of current AI systems can make 

their intelligence “brittle.” Without the ability to under-
stand the broader context for their actions, AI systems 
may not understand when that context has changed and 

their behavior is no longer appropriate. In constrained 
settings such as games, this can be less of an issue. In 
real-world settings, however, this means that AI systems 
can suddenly and dramatically fail if the environment 
or context for their use changes. They can move from 
super smart to super dumb in an instant. This can be true 
even for learning systems. Thus, human oversight and 
judgment in the deployment of AI systems is necessary 
to avoid or mitigate the risk of brittleness. Humans who 
supervise the operation of AI systems can step in to halt 
or change the operation of the system if the environment 
changes and it begins to fail.

Predictability
Because of their complexity, it may not always be 

possible for users to anticipate the behavior of an AI 
system in advance. This means that users are some-
times surprised by how a system behaves. This can 
be exacerbated when AI systems are goal-oriented 
and/or interact with real-world environments. For 
example, a user may not be able to predict precisely 
when a self-driving car will change lanes or perform 
other maneuvers. Similarly, even the programmer who 
designed a chess-playing computer program may not 
be able to predict which moves the chess program will 
play. In both examples, given a set of general rules for 

how to behave, the AI system is given the authority to 
determine the best course of action to achieve a goal 
(driving to a destination; winning a chess game) based on 
the specific circumstances at the time (driving envi-
ronment; location of pieces on the chess board). Rather 
than being a drawback, this flexibility is precisely the 
point of designing an AI system – to allow a machine to 
determine the best course of action to solve a problem, 
given a variety of potential environmental conditions. 
This feature of AI-enabled systems sometimes can be 
problematic, however, if the behavior of the system falls 
outside the bounds of the kinds of actions that the human 
user may expect or desire.

The problem of unpredictable behavior can occur 
even in systems that do not use machine learning. For 
example, in 2012 the financial trading firm Knight Capital 
Group was wiped out by a financial glitch that led their 
algorithms to execute 4 million erroneous trades in 45 
minutes, resulting in a $460 million loss.33 This happened 
even though Knight Capital Group’s automated trading 
algorithms were relatively simple compared to today’s 
cutting-edge AI methods. Better testing and evaluation 
of AI systems in realistic environments can help identify 
these behaviors in advance, but this challenge is likely to 
remain a risk for complex autonomous systems inter-
acting with real-world environments. 

Explainability
Some AI methods make it difficult, even after the fact, 

to explain the causes of their behavior. The behavior of 
rule-based systems is generally understandable, at least 
afterward, because a given behavior can be traced back 
to a particular rule or interaction of rules. For learning 
systems, the AI system’s behavior depends on its prior 
experiences or training data. The information that 
deep neural networks use to identify images is encoded 
within the strength of connections within the network, 
for example, not a set of explainable rules. An AI image 
recognition system may be able to correctly identify an 
image of a school bus, but not be able to explain which 
features of the image cause it to conclude that the picture 
is a bus. This “black box” nature of AI systems may create 
challenges for some applications. For instance, it may 
not be enough for a medical diagnostics AI to arrive at a 
diagnosis; doctors are likely to also want to know which 
indicators the AI is using to do so. Research into more 
explainable AI methods is thus critical to expanding 
potential applications for AI systems. 34 

AI systems may perform 
far better than humans 
in some areas while 
simultaneously failing to 
exhibit common sense.
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Machine Learning Safety Problems and 
Vulnerabilities 

Machine learning techniques are powerful, but have a 
number of potential safety problems that can arise from 
failures at any stage of the learning process. Learning 
systems can generate flawed outcomes if their goal, or 
objective function, is improperly specified. This can 
happen in two possible ways. One way is if the goal 
does not take into account some important factors and, 
therefore, pursuit of the goal results in some negative 
side effect or harm. In their paper, “Concrete Problems in 
AI Safety,” Dario Amodei, a research scientist at OpenAI, 
and other AI researchers give the thought experiment 
of a cleaning robot that inadvertently damages the 
environment by knocking over a vase because it was not 
programmed to avoid doing so.35  

In a real-world example, independent researchers 
have claimed that YouTube’s algorithm for recom-
mending additional videos pushes viewers to extremist 
content. These researchers hypothesize that the algo-
rithm is designed to maximize viewer time spent on 
YouTube, and that the algorithm learned that more 
inflammatory content kept viewers watching longer. If 
true, this would be an example of the pursuit of a goal 
(maximize ad revenue) having an unintended negative 
side effect (increasing exposure to extremist content).36 

A second way in which an improperly specified goal 
can cause problems is if the algorithm engages in reward 
hacking. This is when the machine learns a behavior that 
technically meets its goal but is not what the designer 
intended. The system has therefore “hacked” its reward 
function. To the human observer, this often looks like 

the AI system is finding a loophole to meet the letter of 
its goal, but not the intent. In a comprehensive survey 
from 50 AI researchers on “The Surprising Creativity of 
Digital Evolution,” the authors note: 

[I]t is often functionally simpler for evolution to 
exploit loopholes in the quantitative measure than 
it is to achieve the actual desired outcome. … We 
often ascribe creativity to lawyers who find subtle 
legal loopholes, and digital evolution is often frus-
tratingly adept at similar trickery.37  

Examples of reward hacking abound from reinforce-
ment learning and evolutionary algorithms in games 
and other digital simulation environments. Just a few 
examples include:

¡¡ A Tetris-playing bot learned to pause the game 
before the last brick fell so that it would never lose.38 

¡¡ Simulated digital creatures evolved clever ways of 
falling to achieve their movement goals without 
actual locomotion or jumping.39  

¡¡ In a naval strategy game that developed new rules 
for combat tactics, the top-scoring rule was one that 
learned to take credit for other rules.40 

¡¡ A reinforcement learning system learned that the 
optimal scoring strategy in a boat racing game was 
not to race at all but to perform tight loops through 
auto-renewing targets mid-course, racking up more 
points than was possible from completing the race.41 

An Uber self-driving car navigates the streets of San Francisco in 2017. Driving is challenging for AI systems because it takes place in an unstructured environment. 
National security applications of AI often have an additional layer of complexity, since adversaries are trying to hack, spoof, or manipulate AI systems. (Justin 
Sullivan/Getty Images)
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¡¡ A computer program deleted the files containing the 
“correct” answers against which it was being evalu-
ated, causing it to be awarded a perfect score.42 

These safety problems raise questions about potential 
national security applications of machine learning. For 
example, a cybersecurity system tasked with defending 
networks against malware could learn that humans are a 
major source of introducing malware and lock them out 
(negative side effect). Or it could simply take a computer 
offline to prevent any future malware from being 
introduced (reward hacking). While these steps might 
technically achieve the system’s goals, they would not be 
what the designers intended. 

Safety problems can also arise from the data machines 
use to learn. AI systems can suffer from the same chal-
lenges of overfitting as statistical models in general. 
Data overfitting is when an AI system learns to mimic 
the training data precisely, rather than the underlying 
concepts the training data represents, so the system 
fails when applied outside of the training data. Another 
problem is ensuring robustness to changes in the input 
data. Even if a system is properly trained on an initial 
set of data, if the actual environment changes, the 
system may not be able to adequately adapt. This can be 
a common problem if the data used to train a learning 
system does not adequately represent the data that it will 
face in the real world. In one real-world example, parents 
posted a video of the voice-activated home computer 
device Alexa searching for adult content after hearing a 

A reinforcement learning system playing a boat racing game developed a strategy of circling auto-renewing targets 
to maximize its score, rather than attempting to win the race. (OpenAI)

toddler request a children’s song.43 A more robust set 
of training data that included small children, who may 
not pronounce words as clearly as adults, might have 
prevented this particular example, but this is a general 
problem for learning systems shifting from training 
datasets to interactions in the real world.

Bias
Bias – a deviation from a standard – can arise in AI 

systems in a variety of ways. Bias is not always problem-
atic, but can be in some cases. One way an AI system can 
exhibit bias is if the objective function, or goal, mirrors 
a bias (explicit or implicit) on the part of the designers. 
If the AI system’s objective accurately reflects the values 
of its designers, then in one sense it is a well-designed 
system. But if those goals are not socially desirable, 
then there could be harmful consequences to using the 
system. For example, a self-driving car that was pro-
grammed to always obey the speed limit, even if it might 
be safer in some settings to drive above the speed limit 
with the flow of traffic, would exhibit a bias toward com-
pliance with the law over passenger safety. 

Another way that an AI 
system can exhibit bias is if 
the training data is biased 
in some way. Some forms 
of bias could have moral 
connotations, if for example 
the data captures the biases 
of the people who collected, 
assembled, or chose the data. 
In other cases, the training 
data could be biased in a 
more technical sense, with 
the training data not being 
a representative sample of 
the actual operating envi-
ronment. For example, a 
chess-playing program that 
was trained on human moves 

Even if a system is properly 
trained on an initial set of 
data, if the actual environment 
changes, the system may not 
be able to adequately adapt.
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might have a bias toward playing in ways that are cog-
nitively easier for humans. This bias could be valuable 
if the intent of the chess program is to mimic a human 
player. If the intent is to play the best possible game of 
chess, however, then this bias could be harmful.

Bias could be a concern for national security applica-
tions where the training data deviates from the actual 
operating environment. For example, it is difficult for 
militaries to realistically simulate actual war. This 
introduces the potential for systems to be biased, and 
potentially in a way that militaries do not discover until 
combat. The fog and friction of real war mean that there 
are a number of situations in any battle that it would be 
difficult to train an AI to anticipate. Thus, in an actual 
battle, there could be significant risk of an error.

System Accidents
AI is also vulnerable to system failures, stemming from 

complex interaction among elements of a system. System 
accidents, which are possible in any sufficiently complex 
system, are exacerbated in competitive environments 
where actors are not incentivized to share their algo-
rithms with one another. When AI systems are involved, 
the interaction among different algorithms can lead to 
bizarre behavior, sometimes at superhuman speeds. 
In 2011, two automated pricing bots on Amazon got 
caught in a price war and escalated the price of a biology 
textbook to $23,698,655.93 (plus $3.99 shipping).44 More 
consequential examples of this phenomenon are stock 
trading flash crashes, which remain a persistent problem 
across multiple financial markets. Financial regulators 
have mitigated the consequences of these flash crashes 
by installing “circuit breakers” that take stocks offline 
if the price moves too quickly. These automated circuit 
breakers allow financial regulators to monitor individual 
stock prices – and react within seconds – at a scale that 
would not be feasible for humans. Flash crashes continue 
to occur, however, with over 1,200 circuit breakers 
tripped across multiple markets in one day in 2015.45 

In national security settings, unintended interactions 
could occur by AI systems trying to gain a competitive 
advantage on one another and taking actions that could 
be destructive or counterproductive. In settings where 
machines interact at superhuman speeds, such as in 
cyberspace or electronic warfare, these interactions 
could lead to harmful consequences before humans users 
can adequately respond. 

Human-Machine Interaction Failures
Even when AI systems work perfectly, accidents 

can still occur if the user does not fully understand the 
system’s limitations or the feedback that it gives. When 
these accidents occur, observers frequently blame the 
human user, but the true cause is a breakdown between 
human and machine. Examples include the 2009 Air 
France 447 crash, which killed all passengers onboard,46  
and the 2016 crash of a Tesla on auto-pilot, which killed 
the driver.47 In these cases, the human operators of 
highly complex automated systems failed to understand 
the information the system was giving them, leading to 
tragic consequences. This is a particular challenge for 
national security applications in which the user of the 
system might be a different individual than its designer 
and therefore may not fully understand the signals the 
system is sending. This could be the case in a wide range 
of national security settings, such as the military, border 
security, transportation security, law enforcement, and 
other applications where the system’s designer is not 
likely to be either the person who decides to field the 
system or the end-user. 

Exploiting Machine Learning Vulnerabilities 
Malicious actors who deliberately seek to subvert 

AI systems can potentially manipulate these AI safety 
problems, creating a new category of risks. Financial 
traders have exploited the behavior of trading algorithms 
to artificially manipulate stock prices.48 Similarly, adver-
saries could learn how AI systems behave and exploit 
their weaknesses. Malicious actors could also subvert 
learning systems by poisoning their data during the 
learning process, so that they learn incorrect behavior. 
This could be done by gaining access to the training 
data and manipulating it in subtle ways to create behav-
ioral flaws once the system is trained. Alternatively, for 
learning systems that interact with the real world, adver-
saries could feed the system data that causes it to learn 
incorrect behaviors. The Microsoft chatbot Tay learned 

In national security settings, 
unintended interactions 
could occur by AI systems 
trying to gain a competitive 
advantage on one another 
and taking actions that 
could be destructive or 
counterproductive. 
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to parrot racist and anti-Semitic language after less than 
24 hours on Twitter.49  

These vulnerabilities present significant challenges for 
artificial intelligence in national security applications, 
which often have high consequences for failure.50 These 
problems are amplified in an inherently adversarial 
context in which both state and non-state actors will 
seek to exploit weaknesses in AI systems and manipulate 
their behavior. 

These safety problems, which apply to a broad range 
of AI and machine learning techniques, are compounded 
by the vulnerability of deep neural networks to false 
data inputs (spoofing attacks). Neural networks that 
normally perform well at object classification tasks, 
such as image recognition, can be fooled by adversarial 

data. Adversarial inputs from a malicious actor, which 
to humans often look like random noise or nonsense 
images, can fool neural networks into believing the 
images are something else – and with high confidence.51  
These “fooling images” can even be embedded into other 
images in a way that is undetectable to humans. These 
attacks, which use specially generated adversarial data, 
can succeed even if the attackers do not have access to 
the training data or source code of the targeted neural 
network.52 In such a case, a local model is trained based 
on the observed behavior of the neural network, such as 
classifying a particular image. Then, adversarial data that 
is inserted post-training to fool the local model is used to 
attack the original neural network. These fooling images 
can even be embedded into physical objects, in one 
demonstration causing an image classifier to misidentify 
a 3D-printed turtle as a rifle. 

Despite significant research on the adversarial data 
problem, AI researchers do not yet have a workable 
solution to protect against this form of attack. Because 
of this vulnerability, image recognition systems could 
be fooled by counter-AI camouflage, causing the image 
recognition system to misidentify objects. Adversaries 
could make a tank look like a school bus, and vice versa. 
Even worse, these patterns could be hidden in a way 
that is undetectable by humans. Decoy objects could 
be scattered around the environment, confusing neural 

Malicious actors who 
deliberately seek to subvert 
AI systems can potentially 
manipulate these AI safety 
problems, creating a new 
category of risks.

network–based sensors, and valid targets could be 
covered with camouflage designed to make them appear 
innocuous. AI researchers have demonstrated the ability 
to do this relatively easily – for example, making a stop 
sign appear to an image classifier to be a 45 mile per 
hour sign simply by adding some small black and white 
stickers. This form of passive environmental hacking 
could be done well in advance of an AI system scanning 
an environment, like a cognitive land mine waiting to 
fool a system when it arrives. Neural network–based data 
classifiers are likely too valuable to ignore, so national 
security decision-makers will need to factor in these 
vulnerabilities when using AI, whether for image recog-
nition or other activities. 

The Capability-Vulnerability Tradeoff
It may be tempting to assume that responsible actors 

will not employ AI and machine learning systems until 
these vulnerabilities are solved, but that is not likely to be 
the case. Computers are vulnerable to hacking, yet that 
has not stopped their use across society and in national 
security settings, even when data breaches have had 

Specially evolved “fooling images” can be fed into AI-based image classifiers 
to trick them into misidentifying images with high confidence. A neural 
network–based image classifier identified all of the above images as the 
associated labels with greater than 99 percent confidence. (Anh Nguyen, 
Jason Yosinski, and Jeff Clune)54
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serious consequences.53 The advantages of using computer 
network technology are too great to ignore, and AI systems 
are similarly attractive. AI systems are powerful and 
have many benefits, but are vulnerable to hacking that 
exploits weaknesses in how they learn, process data, and 
make decisions. These risks are heightened in national 
security settings, which are often adversarial, high conse-
quence, and difficult to replicate in training environments. 
Policymakers must be aware of these risks and seek to 
mitigate against these vulnerabilities as much as possible 
in the design and use of AI systems. 

Future AI Progress

The field of AI and machine learning has advanced 
dramatically in only the past few years and continues 
to move forward in leaps and bounds. The future of AI 
is highly uncertain. One key variable is progress toward 
creating more general-purpose AI systems that could 
exhibit intelligent behaviors across multiple domains, 
unlike today’s narrow AI systems. Another significant 
variable is progress on unsolved safety problems and 
vulnerabilities in AI systems. A world where AI per-
formance outpaces safety could be quite hazardous if 
nations race to put into the field AI systems that are 
subject to accidents or subversion (e.g., spoofing attacks). 
On the other hand, progress in AI safety could mitigate 
some of the risks that stem from national security uses 
of AI. Much of the innovation in the field of artificial 
intelligence is being driven by the commercial sector, but 
governments do have the ability to influence the direc-
tion of progress through research investments. The U.S. 
government should increase its investment in AI safety to 
improve the prospects for building robust, reliable, and 
explainable AI systems in national security settings.  
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